If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+27x-1944=0
a = 18; b = 27; c = -1944;
Δ = b2-4ac
Δ = 272-4·18·(-1944)
Δ = 140697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140697}=\sqrt{729*193}=\sqrt{729}*\sqrt{193}=27\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27\sqrt{193}}{2*18}=\frac{-27-27\sqrt{193}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27\sqrt{193}}{2*18}=\frac{-27+27\sqrt{193}}{36} $
| 22=37-a+6 | | 18x^+27x-1944=0 | | 2(x-3)+1=1x-4 | | 9w=5w+12 | | 1,000,000/250,000xX=12 | | 0.25X+0.33X+5=x | | -5x+17=13 | | 7x+2=3× | | 6x-1=-4+2x-5 | | 2(2x-20)+2×2x=180 | | 12X-16Y=-24y8X+16Y=64 | | 4x-11=2x+10 | | 7x+2=3×+30 | | 9/4(4x−1)=8/5(1+4x) | | 21 4(4x−1)=13 5(1+4x) | | 9x-12-10x-7x=10 | | 7x-16=x+14 | | 2(x+0.1)=1.8 | | 2(x+2)/x=3 | | 3(x-5)=2x+14 | | 5/11=12/y | | F(x)=9x+13 | | 3x+27-x-8=-4x+1 | | 5x+12=4x-5 | | x-8+2x=10 | | -1.8(-1.6x+1.7)=-1.8(-3.6x-4.1) | | 9x+17=2x+10 | | 18x^2+12x+48=0 | | 40(5x-3)=60(3x-2) | | 7x-4-6x=19 | | 25+11/25b=47 | | x2+32x−2=0 |